博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
支持向量机
阅读量:5134 次
发布时间:2019-06-13

本文共 4432 字,大约阅读时间需要 14 分钟。

from __future__ import print_functionfrom time import timeimport loggingimport matplotlib.pyplot as pltfrom sklearn.cross_validation import train_test_splitfrom sklearn.datasets import fetch_lfw_peoplefrom sklearn.grid_search import GridSearchCVfrom sklearn.metrics import classification_reportfrom sklearn.metrics import confusion_matrixfrom sklearn.decomposition import RandomizedPCAfrom sklearn.svm import SVCprint(__doc__)# Display progress logs on stdoutlogging.basicConfig(level=logging.INFO, format='%(asctime)s %(message)s')################################################################################ Download the data, if not already on disk and load it as numpy arrayslfw_people = fetch_lfw_people(min_faces_per_person=70, resize=0.4)# introspect the images arrays to find the shapes (for plotting)n_samples, h, w = lfw_people.images.shape# for machine learning we use the 2 data directly (as relative pixel# positions info is ignored by this model)X = lfw_people.datan_features = X.shape[1]# the label to predict is the id of the persony = lfw_people.targettarget_names = lfw_people.target_namesn_classes = target_names.shape[0]print("Total dataset size:")print("n_samples: %d" % n_samples)print("n_features: %d" % n_features)print("n_classes: %d" % n_classes)################################################################################ Split into a training set and a test set using a stratified k fold# split into a training and testing setX_train, X_test, y_train, y_test = train_test_split(    X, y, test_size=0.25)################################################################################ Compute a PCA (eigenfaces) on the face dataset (treated as unlabeled# dataset): unsupervised feature extraction / dimensionality reductionn_components = 150print("Extracting the top %d eigenfaces from %d faces"      % (n_components, X_train.shape[0]))t0 = time()pca = RandomizedPCA(n_components=n_components, whiten=True).fit(X_train)print("done in %0.3fs" % (time() - t0))eigenfaces = pca.components_.reshape((n_components, h, w))print("Projecting the input data on the eigenfaces orthonormal basis")t0 = time()X_train_pca = pca.transform(X_train)X_test_pca = pca.transform(X_test)print("done in %0.3fs" % (time() - t0))################################################################################ Train a SVM classification modelprint("Fitting the classifier to the training set")t0 = time()param_grid = {'C': [1e3, 5e3, 1e4, 5e4, 1e5],              'gamma': [0.0001, 0.0005, 0.001, 0.005, 0.01, 0.1], }clf = GridSearchCV(SVC(kernel='rbf', class_weight='auto'), param_grid)clf = clf.fit(X_train_pca, y_train)print("done in %0.3fs" % (time() - t0))print("Best estimator found by grid search:")print(clf.best_estimator_)################################################################################ Quantitative evaluation of the model quality on the test setprint("Predicting people's names on the test set")t0 = time()y_pred = clf.predict(X_test_pca)print("done in %0.3fs" % (time() - t0))print(classification_report(y_test, y_pred, target_names=target_names))print(confusion_matrix(y_test, y_pred, labels=range(n_classes)))################################################################################ Qualitative evaluation of the predictions using matplotlibdef plot_gallery(images, titles, h, w, n_row=3, n_col=4):    """Helper function to plot a gallery of portraits"""    plt.figure(figsize=(1.8 * n_col, 2.4 * n_row))    plt.subplots_adjust(bottom=0, left=.01, right=.99, top=.90, hspace=.35)    for i in range(n_row * n_col):        plt.subplot(n_row, n_col, i + 1)        plt.imshow(images[i].reshape((h, w)), cmap=plt.cm.gray)        plt.title(titles[i], size=12)        plt.xticks(())        plt.yticks(())# plot the result of the prediction on a portion of the test setdef title(y_pred, y_test, target_names, i):    pred_name = target_names[y_pred[i]].rsplit(' ', 1)[-1]    true_name = target_names[y_test[i]].rsplit(' ', 1)[-1]    return 'predicted: %s\ntrue:      %s' % (pred_name, true_name)prediction_titles = [title(y_pred, y_test, target_names, i)                     for i in range(y_pred.shape[0])]plot_gallery(X_test, prediction_titles, h, w)# plot the gallery of the most significative eigenfaceseigenface_titles = ["eigenface %d" % i for i in range(eigenfaces.shape[0])]plot_gallery(eigenfaces, eigenface_titles, h, w)plt.show()

  

转载于:https://www.cnblogs.com/kuihua/p/5922465.html

你可能感兴趣的文章
【原】小程序常见问题整理
查看>>
C# ITextSharp pdf 自动打印
查看>>
【Java】synchronized与lock的区别
查看>>
django高级应用(分页功能)
查看>>
【转】Linux之printf命令
查看>>
关于PHP会话:session和cookie
查看>>
STM32F10x_RTC秒中断
查看>>
display:none和visiblity:hidden区别
查看>>
C#double转化成字符串 保留小数位数, 不以科学计数法的形式出现。
查看>>
牛的障碍Cow Steeplechase
查看>>
Zookeeper选举算法原理
查看>>
3月29日AM
查看>>
利用IP地址查询接口来查询IP归属地
查看>>
HTML元素定义 ID,Class,Style的优先级
查看>>
构造者模式
查看>>
http和https的区别
查看>>
Hbuild在线云ios打包失败,提示BuildConfigure Failed 31013 App Store 图标 未找到 解决方法...
查看>>
找到树中指定id的所有父节点
查看>>
今天新开通了博客
查看>>
AS3优化性能笔记二
查看>>